Note

Characterization of the polysaccharide antigen of *Klebsiella pneumoniae* O:9 lipopolysaccharide

Leann L. MacLean a, Chris Whitfield b and Malcolm B. Perry a

(Received April 13th, 1992; accepted July 2nd, 1992)

The lipopolysaccharides (LPS) of *Klebsiella pneumoniae* have been implicated as virulence determinants. Although some 72 K-serospecific capsular antigens have been described for *Klebsiella* sp., it has been suggested that there exist only 8 associated unique LPS O-polysaccharide antigens in this gram-negative bacterial species¹.

In recent re-investigations of *Klebsiella* LPS O-chains^{2,3}, originally proposed structures have required revision, and the production of multiple unique O-chain structures by a given designated *Klebsiella* serotype has been demonstrated^{2,3}. The present investigation of the *Klebsiella* O:9 LPS polysaccharide has shown that it is a polymer of a branched pentasaccharide unit composed of only D-galactose residues. The newly deduced structure of the O-antigen differs from the originally proposed structure⁴ in the mode of linkage at its branch point and, as a consequence, also in the structure of the backbone D-galactan polymer.

The O-polysaccharide, extracted by the method of Johnson and Perry⁵ as described in the Experimental section, had $[\alpha]_D$ +93° (c 1.5, H₂O) and, by quantitative GLC⁶ and capillary GLC of the derived (R)-2-butyl glycosides⁷, was shown to be composed of D-galactose (90%). Anal. Found: C, 39.77; H, 5.71; N, 0.20; and ash 0%. The ¹H NMR spectrum of the native O-chain showed signals at δ 2.12 and 2.15 indicative of O-acetyl methyl protons while its ¹³C NMR spectrum (Fig. 1B) also showed O-acetyl signals at δ 21.20 and 21.18 (CH₃CO) and 173.5 and 174.7 (CH₃CO). The ¹H NMR spectrum of the O-deacetylated O-polysaccharide (dil NH₄OH) showed *inter alia* four H-1 signals, at δ 5.31 (1 H, $J_{1,2}$ 3 Hz), 5.25 (2 H, $J_{1,2}$ 0.5 Hz), 5.08 (1 H, $J_{1,2}$ 3 Hz), and 5.05 (1 H, $J_{1,2}$ 3 Hz). The ¹³C NMR spectrum of the same O-deacetylated O-polysaccharide (Fig. 1A) showed

^a Canadian Bacterial Diseases Network, Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6 (Canada)

^b Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

Correspondence to: Dr. M.B. Perry, Canadian Bacterial Diseases Network, Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada.

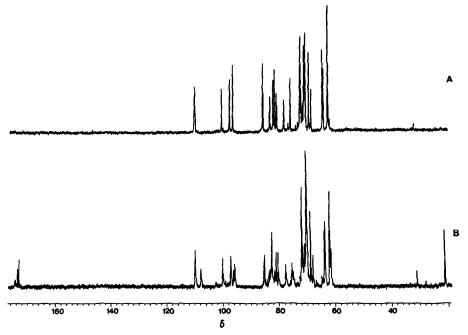


Fig. 1. ¹³C NMR spectra (125 MHz, 47°C) of: A, O-Deacetylated K pneumoniae O:9 LPS O-polysaccharide and B, native K pneumoniae O:9 LPS O-polysaccharide.

inter alia five C-1 signals, at δ 110.2 ($J_{C,H}$ 176 Hz), 110.1 ($J_{C,H}$ 176 Hz), 100.3 ($J_{C,H}$ 170 Hz), 97.6 ($J_{C,H}$ 172 Hz), and 96.3 ($J_{C,H}$ 171 Hz). These chemical shift and $J_{C,H}$ coupling data were indicative of two β -D-Gal f and three α -D-Gal f residues in a repeating pentasaccharide unit of the D-galactan polymer. The O-acetyl content of the native O-chain corresponded to \sim 1.7 mol per repeating unit.

The O-deacetylated O-chain had $[\alpha]_D + 86^\circ$ (c 5.4, H_2O). Anal. Found: C, 40.90; H, 5.64; N, 0.66; and ash 0%. On methylation analysis⁸ with the aid of GLC-MS the alditol acetates of 2,3,4,6-tetra-O-methyl-D-galactose (t_R 1.08), 2,5,6-tri-O-methyl-D-galactose (t_R 1.36), 2,4,6-tri-O-methyl-D-galactose (t_R 1.47) and 4,6-di-O-methyl-D-galactose (t_R 1.82) were identified in the molar ratio 1:2:1:1. This analysis is consistent with the proposed pentasaccharide structure and the presence in the repeating unit of a nonreducing D-Gal p end-group, two \rightarrow 3)-D-Gal p residues, a \rightarrow 3)-D-Gal p residue, and a branched, di-O-substituted residue, \rightarrow 2,3)-D-Gal p.

As expected from the methylation evidence, the periodate oxidation of the O-deacetylated O-chain resulted in the oxidation of the p-Gal p nonreducing end-group and the exocyclic C-6-C-5 diol systems of the p-Gal f residues. The product of the Smith type⁹ mild hydrolysis of the reduced (NaBH₄), periodate-oxidized O-chain afforded, on Sephadex G-50 chromatography, a polysaccharide, eluting at the void volume of the system, which had $[\alpha]_p + 62^\circ$ (c 1.1, H₂O) and

was composed of D-Gal and L-Ara (1:1). This latter polymer, which resisted further periodate oxidation, on methylation analysis gave the acetylated alditol derivatives of 2,5-di-O-methyl-L-arabinose and 2,4,6-tri-O-methyl-D-galactose (1:1), as expected for an unbranched linear polymer composed of 1,3-linked L-Ara f and D-Gal p residues. The L-arabino-D-galactan gave ¹H and ¹³C NMR spectra indistinguishable from those of previously fully characterized polymers composed of alternating 1,3-linked L-Ara f and D-Gal p residues^{2,9}. The above evidence leads to the unambiguous conclusion that the backbone of the native O-polysaccharide is a linear polymer of a repeating disaccharide having the structure \rightarrow 3)- β -D-Gal f-(1 \rightarrow 3)- α -D-Gal p-(1 \rightarrow , previously characterized as Klebsiella galactan I and found in K pneumoniae O1 (ref. 2) and O2a (ref. 3) antigens.

The identification of 4,6-di-O-methyl-D-galactose in the methylation analysis of the O-chain, considered in conjunction with the characterization of the O-chain linear backbone and the α -D configurations of the D-Gal p residues, indicates that the nonreducing α -D-Gal p end-group is $(1 \rightarrow 2)$ -linked to α -D-Gal p units in the backbone structure. From the NMR spectra of the O-chain it can be deduced that this substitution follows a regular pattern consistent with the O-chain being composed of a repeating pentasaccharide unit in which the D-Gal p and D-Gal p residues have the p and p configurations respectively. Thus, the structure is as shown here.

$$\rightarrow$$
 3)- β -D-Gal f -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Gal f -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow 2 \uparrow 1 α -D-Gal p

In the previously proposed structure the anomeric configurations at the glycosidic linkages were not determined⁴, and the linkage sequence at the 2,3-di-O-substituted α -D-Gal p branched point was reversed.

The location and proportion of the O-acetyl substituents appears to be variable and dependent upon bacterial growth conditions, but may however play a role in the serology of the O:9 antigen. In the 13 C NMR spectra of native O-chain preparations the presence of extra C-1 signals from the p-Gal f residues at δ ~ 108 (Fig. 1B) suggests that a significant proportion of O-acetylation was always present at the 2 position of these units.

EXPERIMENTAL

Cells of Klebsiella pneumoniae O9: K⁻ (NRCC 4378, CWK 48, from strain 121205), grown in 3.7% (w/v) brain-heart infusion (Difco) at 37°C in a Microfirm fermenter, were extracted by the hot aqueous phenol method⁵, and subsequent isolation procedures were performed as previously described². Ultracentrifugation afforded LPS from the aqueous phase (6% yield) and the phenol phase (0.9% yield). Fission of the aqueous phase LPS with hot 2% acetic acid (2 h, 100°C) gave

an insoluble lipid A ($\sim 10\%$) and Sephadex G-50 chromatography of the water soluble products gave the O-polysaccharide (69% yield) eluting at the void volume of the system. Glycan hydrolyses, aldose identifications, periodate oxidations, methylation analyses, and ^{1}H and ^{13}C NMR spectroscopy were also done under the same conditions as previously described 2 .

GLC-MS analysis of acetylated methyl alditols was done with an OV-17 fused silica capillary column using a temperature program from 200°C (2 min) to 240°C at 1°C/min. Retention times are quoted relative to 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl-D-glucitol ($t_{\rm R}=1.00$). ¹H and ¹³C NMR chemical shifts (δ), quoted relative to tetramethylsilane, were measured from internal acetone ($\delta_{\rm H}$ 2.225, $\delta_{\rm C}$ 31.07); coupling constants are given in Hertz.

REFERENCES

- 1 L. Kenne and B. Lindberg, *Bacterial Polysaccharides*, in G.O. Aspinall (Ed.), *The polysaccharides*, Vol. 2, 1983, pp 287-363.
- 2 C. Whitfield, J.C. Richards, M.B. Perry, B.R. Clarke, and L.L. MacLean, J. Bacteriol., 173 (1991) 1420-1431.
- 3 C. Whitfield, M.B. Perry, L.L. MacLean, and S.H. Yu, J. Bacteriol., 174 (1992) 4913-4919.
- 4 B. Lindberg, J. Lonngren, and W. Nimmich, Carbohydr. Res., 23 (1972) 47-55.
- 5 K.G. Johnson and M.B. Perry, Can. J. Microbiol., 22 (1976) 29-34.
- 6 S.W. Gunner, J.K.N. Jones, and M.B. Perry, Can. J. Chem., 39 (1961) 1892-1895.
- 7 G.J. Gerwig, J.P. Kamerling, and J.F.G. Fliegenthart, Carbohydr. Res., 62 (1978) 349-357.
- 8 S. Hakomori, J. Biochem (Tokyo), 55 (1964) 205-208.
- 9 I.J. Goldstein, G.W. Hay, B.A. Lewis, and F. Smith, Methods Carbohydr. Chem., 5 (1965) 361-370.